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The dynamics of a deformable drop suspended in an 
unbounded Stokes flow 
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The velocity fields in and around a deformed drop suspended in an arbitrary 
(albeit Stokesian) unbounded flow field are solved. The usefulness of the solution 
is demonstrated by solving the drag force and lateral migration of a drop sus- 
pended in an unbounded Poiseuillian field. 

It is demonstrated that, due to the deformation of the drop, there exists a radial 
component of the settling velocity. The direction of the radial migration depends 
primarily on the product U,, (the Hadamard-Rybczynski terminal settling 
velocity) by U, (the maximum Poiseuillian velocity). A positive product results 
in a lateral migration away from the location of maximum velocity; the converse 
also holds. 

1. Introduction 
The motion of deformable bubbles or droplets suspended in another fluid are 

encountered frequently in such varied applications as boiling problems, fluidized 
beds, direct contact heat exchangers, etc. Blood flow is one of the more complex 
phenomena of medicine, the deformability of the white blood cells further 
complicating analysis. A rapidly increasing number of publications in the field is 
only one indication of the intense interest in biological systems containing blood. 

The lateral migration of solid particles suspended in laminar flow is a well- 
known phenomenon which has been tested experimentally, e.g. Goldsmith & 
Mason (1962), Segr6 & Silberberg (1962); and treated analytically to some extent, 
e.g. Repetti & Leonard (1966) and Saffman (1965). Brenner (1966) summarized 
the then-existing experimental data and reviewed the theoretical attempts. In  
addition, he stated that a non-neutrally buoyant drop may migrate to the axis or 
wall of the tube, because of its deformation. This phenomenon will occur also in 
the Stokes flow r6gime. Later, Cox & Brenner (1968) advanced a theory for the 
lateral migration of solid particles in Poiseuille flow. That theory included the 
effects of the flow, the solid boundaries and the inertia terms in the Navier- 
Stokes equations. Due to the complexity of the formulae, no numerical computa- 
tions were given and no comparison with the experimental data wm made. 

The motion of deformable bodies in a fluid is much more complex, since the 
shape of the interface has to be solved simultaneously with the field equations. 
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Bugliarello & Hsiao (1964) studied factors affecting the phenomenon of unequal 
distribution of blood cells in the blood vessels. Their experiments were, however, 
conducted with solid particles. Linegard & Whitmore (1968) stated that the com- 
plex flow properties of blood are related directly to the deformability of the 
leukocytes. There is other overwhelming evidence of the existence of defor- 
mation of white blood cells in flowing blood, and there have been many attempts 
to lump these effects in an overall property such as pseudo-plasticity. Chaffey & 
Brenner (1967) investigated the flow around a neutrally buoyant drop suspended 
in a simple shear flow, while considering the effect of the drop's deformation on 
the flow field. Cox (1969) solved the time-dependent flow field in and around a 
neutrally buoyant deformable drop submerged in an arbitrary unbounded flow. 
He considered, however, only first-order effects of the deformation on the flow 
field, and his unperturbed flow field is limited to a generalization of shear flows 
(Couette flow, hyperbolic flow, etc.). 

Hetsroni & Haber (1970) suggested a general solution of the flow fields in and 
around a drop suspended in an arbitrary (but Stokesian) unbounded flow field. 
That solution is based on an iterative procedure, i.e. the flow fields are solved first 
for a spherical drop, and the geometry of the interface is then determined for the 
perturbed flow field. In the second iteration, presented herein, the flow field in 
and around the deformed drop is sought, etc. 

Thus, the purpose of the present work is to provide the second iteration to our 
previous solution, namely to present a method of solution for the flow fields in 
and around a deformed drop? and to evaluate the drag force and the lateral migra- 
tion of such a drop, in terms of the unperturbed velocity field. 

First, we solve the general velocity fields in and around a deformed drop 
suspended in an arbitrary (but Stokesian) unbounded flow field. The usefulness of 
the solution is then demonstrated by solving the drag force and lateral migration 
of a drop suspended in an unbounded Poiseuillian field. 

2. Formulation of the problem 
2.1. Statement of the problem 

The problem considered herein is that of a single non-neutrally buoyant drop or 
bubble suspended in an unbounded medium. The fluids involved are isothermal, 
Newtonian and of constant physical properties. The flow around the drop is 
creeping so thak inertial terms may be neglected. 

The co-ordinate system employedis spherical (T,  8, q5), with the origin coinciding 
with the centre of mass of the drop. It is assumed that the radial component of the 
berminal settling velocity is small, so that the co-ordinate system is inertial. 
The co-ordinate system is depicted in figure 1. 

The conservation equations exterior to the drop are 

-f The term drop is used here for brevity. The solution applies to bubbles as well. 
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and for the flow field interior to the drop 

p*V2u = Vpi)  
v .u  = 0) 

where v and u are the velocity vectors exterior to the drop and interior to  it, 
respectively; p is the pressure, including the potential gravity field and the 
subscripts e and i refer to  the properties exterior to the drop and interior to  it, 
respectively. 

I I 

1: 
I I I\ 

c 

FIGURE 1. The co-ordinate system used. 

2.2. The boundary conditions 

The boundary conditions to be employed, neglecting surface-active agents, are as 
follows: 

At the interface of the drop the following boundary conditions are specified: 

v = u, (3a) 
17-2 
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8, = %, = 0, 

where n(,) and T(,) are the normal vectors of the stress tensor exterior to the drop 
and interior to it, respectively; t, is a unit vector normal to the interface; IT is the 
surface tension; and Rl and R, are the principal radii of the interface. 

The boundary conditions far from the drop are 

v = v ,  at r=co, ( 3 4  
where v, is some arbitrary (but Stokesian) velocity distribution. 

3. The solution 
3.1. The first iteration 

The first iteration, i.e. the flow fields in and around a spherical drop, was calculated 
in our previous work (Hetsroni & Haber 1970). Also given there is the function 
describing the deviation of the interface from sphericity, to a first-order approxi- 
mation. 

To sum up that solution briefly: the velocity and pressure fields exterior t,o the 
drop are 

where the superscript (1)  denotes the first iteration. The velocity and pressure 
fields interior to the drop are 

where x:), &), p g ) ,  x!!Lp1, p!!k-l are known solid spherical harmonics (of 
the first iteration). These spherical harmonics depend directly on the unperturbed 
velocity field v, and on the physical properties. These solid spherical harmonics 
and their coefficients are defined in appendix A. 

Alsosesulting from the first iteration is the equation of the interface of the drop, 
i.e. 

where ((l) is the function describing the deviation of the interface from sphericity, 

r = a [ l +  P ( 0 ,  $)I, ( 6 4  

viz. m 

P ( 0 ,  $) = c q q 0 ,  $ 1 7  ( 6 b )  
q=2 
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where S, are the surface harmonics, and the Lp7s are small dimensionless para- 
meters on which the second iteration is based, and which are defined in appendix 
A :  

2 (*e [(4q3+ 6q2 + 2q + 3)h + (4q3 + 6p2 - 4q - 6)] 
1 

L p =  (q2+q-2)q(q+l)( l+A) c7 

I PFPe + - [(4qs+ 6q2+ 2q- 3)h  + (4q3+ 6q2- 4q)] , (7) 
U 

where A = ,uCi/,ue and where a? and P," have dimensions of velocity and depend 
solely on the unperturbed velocity distribution. Notice that the above derivation 
was carried out for the case when both (arpe/u) < 1 and (Pr,ue/a) < 1. For this 
case our solution agrees with the presumably more general case treated by Cox 
(1969). This restriction is however not serious. 

3.2. Velocity fields of second iteration 
The velocity and pressure fields interior to  the drop and exterior to it are now 
defined as follows: 

W 

u = u(l)+u(2) = U(l)+ Lqlqq), (8) 
q = 2  

rn 

where ~ ( 2 1 ,  pi2), v(2), pi2) are the second iterations of the velocity and pressure 
fields interior to the drop and exterior to it, respectively. These fields were 
expanded in series, in terms of the small dimensionless parameters Lq, where 
v ( ~ )  and u ( ~ )  are to be determined. 

The notation of equations (8) to ( 1  1)  is an abbreviation of a more detailed 
notation, for example: 

W W Q  

u(2) = 2 LPU(,) = c c [LFu(q,m)+2FQ(q7m)1. 
q = 2  q=L m = o  

The equations of motion to be satisfied are obtained by substitution of (7)-( 11) 
into (1)  and (2). Equating term by term andrecalling that the Lq7s are independent 
and that v(l), pi1), etc., satisty (I), one finds that v ( ~ ) ,  u ( ~ )  also satisfy the Stokes 
equations and the equation of continuity. The velocities v ( ~ )  and u(*) can be 
described by the general solution of Lamb (1945), identical to (4a) and (5a). 

The boundary conditions of (3) are not convenient for computation, and are 
therefore transformed as follows: 

[v], . t ,  = [u], . t, = 0, 

v + [vl, = v [ul,, 
t, . v x [v], = t,. v x [u],, 
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where 7 ~ ( ~ )  and T ( ~ )  are the normal stress vectors exterior to the drop and interior 
to it, respectively; r is the surface tension; the subscript s denotes that the 
parenthesized value is evaluated on the interface, and where the unit vector tn is, 
to a first-order approximation (cf. Cox 1969): 

(13) tn = t, - c L,0Sq + o(L;), 
P 

where 0( ) is a dimensionless vectorial differential operator defined as 

Substituting (8)-( 11) into ( 12) one obtains the following boundary conditions for 
the second iteration of the velocity fields interior to the drop and exterior to it 
(appendix B) : 

from (B5) 

from (B 6) 

V&), = 0 .  (Sqv(l)*); 
* * 

V(g)r - u(q)r  = 0; 

from (B13) r.Vx[v(,)-u(,)]* = r . V x  

+t , .Vx{as , . [ lT(~~-+~~]*}- t , .Vx ( s, [ r-- "rY rw2]*); 
(15d 

where +) and dl) are the stress tensors, based on vn) and u(l), respectively, 
from (B 19) 

+ tr . v x {t, x [,(I) - +1)]*. OSq} 
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The solution is now continued by substituting (4a)  and ( 5 a )  into the right-hand 
side of (15) .  After somewhat lengthy computation the following is obtained 
(appendix C) : 

W 

) n = l  i 

W 

+t , .Vx 7Sqxt ,  C ( v A n / a ) ( n 2 + n - 2 ) S n  = (&./a) x {Cep"Si), (16e)  

where the coefficients aTn, bFn, cFn,  dPfl andey9"aredefined by (C 13) and (C 14) 
(appendix C). These coefficients are merely functions of the rakio of viscosities h 
and the known coefficients of the unperturbed velocity field a,, /In and yn. Note 
that in (15) we expressed the unknown velocity fields and combinations thereof 
(on the left-hand sides) in terms of known quantities, on the right-hand sides 
of the equations. In  order to simplify further this presentation, new coefficients 
ii;, @, E E ,  d: and E; are now defined as follows: 

1 n=2 

I 
1 

W 

C agi for n < q, 

aai+n-q n for n 3 q, 

i = l  
&(q)  = i i=l 

but since 

one obtains 
( ,n$ aa.7L8i) = m dn,q ,~n .  

n = l  t=0,1 n = l  

The coefficients 8n(q), dnCq) and En,) are defined in a similar manner. Thus, 
substituting (a), (8)-(11) and (18 )  in (15), the following is obtained (see also 
Hetsroni & Haber 1970): 



W 

-n-@:(q)) = c b",(*)Sn, (19c) 
a n = l  

1 0 0 

2(2n - 1)  

n(n + 1 )  
2 (2n  - 1) 

1 
2(2n  + 3 )  

- 1  
1 

0 0 

n(n + 1) n(n - 1) -(n+ 1) ( n + 2 )  
2 (2n  + 3 )  

The coefficients 

- 4 % ) 7  BE(@), CEw, A".n-l(g),  BTn-i(*), etc. 

are unknown and have to be determined. Substituting (20) into (19) there are 
obtained six equations with the six unknowns. These equations can be separated 
into two groups of equations, viz. 

7 -  

An(*) 

B7l (q 1 

A-n-l(q, 

and 
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The solution of the above equations results in 

265 

Thus, the solutions of the second iteration of the velocity fields are completed, 
with (4) ,  (8)-(11), (20)  and (23).  These solutions are given in terms of the known 
coefficients of the unperturbed velocity field far from the drop. 

Note that the solution thus far has beenkept quite general: it  gives the velocity 
fields inside and around a single deformed drop suspended in an unbounded 
medium when the unperturbed velocity field far from the drop is arbitrary 
(albeit Stokesian). 

The general solution is now continued and the general drag force on a deformed 
drop is evaluated. An example of the use of our solution for an unbounded para- 
bolic flow is given in $3.4. 

3.3. The drag force o n  a deformed drop 
The drag force acting on a deformed drop is now evaluated. We avail ourselves of 
the formula of Happel & Brenner (1965, p. 67) expressing the drag force in terms 
of the solid spherical harmonic p-, and recall that this drag is independent of the 

F, = - 4nV(r3p-,). shape of the drop: 

For the flow field of the second iteration, namely the force acting on the drop 
due to the velocity v(2) of the second iteration only, one obtains: 
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which completes the formula for the general drag force acting on a single deformed 
drop due to the velocity only. Again, the force Fg) is given in terms of the 
coefficients and a;)?.,, which in turn depend on the physical properties of the 
fluids and on the unperturbed velocity distribution far from the drop. 

3.4. A drop suspended in an unbounded PoiseuillianJlow field 
To illustrate the usefulness of our general solution we shall now consider the 
forces acting on a drop suspended in an unbounded constant Poiseuillian velocity 
field. 

This problem is solved as follows. First, the coefficients a,, p, and yn of the 
unperturbed velocity field are computed (appendix A); next, the coefficients 

i\l ... 1 2 3 
5 2 - 3 h  -- 15 1-h -- 5 

2 l + h  2 l + h  
1 

2 ( l + h )  

2 l + h  20 2 ( 1  + A )  

2 l + h  2 ( l + h )  2 ( 1  + A )  

12 l + h  12 l + h  12 l + h  

'Ni 

' f i  
3 1-h - 15h -- 1 

1 

5 1-h 6 - 41h -- 1 
2 

3 
5 16-79h -- 35 1-h  -- 5 1  -- 

'li 1 !i 0 0 

TABLE 1 

designated by the Hebrew letters, Aleph lx,, Beth '3, and Gimel '2, (I = 1,2,3)  
are calculated by using (CZ), (C5) and (C9); finally, the corresponding coefficients 
hf.", g?", f?", nfy" and m?" are evaluated from (C 14). 

The coefficients of the first iteration, for the deviation from sphericity function, 
are given in appendix A as 

16+19Ape 10+ l l h &  -pi,  L: = - p:. 8 ( l + h )  fT 8 ( l + h )  IT 
L; = (27) 

These coefficients were evaluated by Hetsroni & Haber (1970) for a Poiseuillian 
flow as follows: 

where the terminal settling velocity of Hadamard-Rybezynski is defined in the 
usual way, namely 

The corresponding coefficients ISn, '3, and lL can now be evaluated. This was 
done, and the results are tabulated in table 1. 
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The corresponding coefficients bpi, q P i , f i i ,  lfi and mFi are calculated according 
to (C 14) and are summarized in table 2, where X denotes a coefficient which is not 
relevant to the following calculation. Note that non-zero results for bpi, qPi and 
eFi were obtained as coefficients of the surface harmonic cos $ P:(cos 6) only. 

Substituting (27) and (28) with the values from tables 1 and 2 into (C 13), one 
obtains $(*, and d:,,, and 6:,,, for q = 2,3. Using (25) and (26) the drag force of the 
second iteration is obtained: 

Fg) = i npea p ! o  2 ?- pi( 19h + 16) (3h2 + 3h + 4)p: 
420( 1 + c Ro Ro 

+(2985h3+ 1971h2+2194h+2440)a~], (29) 

where a! and pp are defined by (28). 

fFi eQ, a mQ. h: i SI" -- A A h  
i\q ... 2 3 2 3 2 3  2 3 2 3  

2 0 3 6  0 - -8- 36 x x 0 0 x x  
3 -12 S b  0 - -8- S S  0 x x ybz 0 x x  

9 
b 0 0 0 -Q 0 0 0  1 - 0 8 

- 1% 

TABLE 2 

It is important to realize that the second iteration for Poiseuillian flow resulted 
in a drag force in the radial direction only. 

In  order to evaluate the radial migration of the droplet (the radial component 
of the terminal settling velocity), we recall the functional relationship between 
the radial velocity U, and the resulting drag force: 

F,, = -2n,ueaUz(2+3h)/(1 +A).  (30) 

Equating (29) to (30), the radial velocity U, is obtained as follows: 

(a) 5 [21( 19h + 16) (3h2 + 3h + 4)pP 
1 

840( 1 + (2 + 3h) Rt u, = - 
+(2985h3+ 1971h2+2194h+2440)a~]+0(~2), (31) 

where the Hebrew letter Mem defines a small dimensionless group as follows: 

(73) = PeUola. 

Substituting (28) into (31) one obtains the radial component of the terminal 
settling velocity of a deformed drop as follows: 

(19h + 16) (3h2 + 3h + 4) a b  
40(2 + 3h) (1 + uHR u, = 

0 0  

(1485h4 + 429hs - 1248h2 + 2494h + 2440) 
1050(2 + (1 + 4- 

or 
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(19h+16)(3h2+3h+4) U a 
where K = 40(2+3h)(l+h) '  ("3% 

Equation (32) completes the solution for the radial component of the terminal 
settling velocity of a drop suspended in an unbounded Poiseuillian velocity field. 

It is of interest to compute the trajectory of a drop (or bubble), when it is 
initially placed at a plane 2 = 0 at a distance Po = bo/Ro from the point of 
maximum velocity. This can be done by solving the relation 

with 
J Po 

P = p 0  at Z/Ro = 0, 

where P = b/Ro 
and where U, is the axial component of the terminal settling velocity. Since the 
second iteration does not contribute any velocity in the x direction, U, is also the 
terminal settling velocity of the first iteration as determined by Hetsroni & Haber 
(1970), viz. 

Substituting (32) and (35) into (34) we obtain 

where ( K )  is defined by (33). Solving and simplifying, 

- ( K )  Z = [l+---(%)z]ln(E)-T. URR 2h P P2-Po" 
RO Uo 2+3h Ro (37) 

This completes the solution of the lateral migration of a drop initially placed at 
a distance Po from the point of maximum velocity of an unbounded Poiseuillian 
velocity field. The trajectories of drops for various cases are depicted in figure 2, 
where Po = 0.5, and where the expression [ 2 h ( ~ / R , ) ~ / ( 2  + 3h)lln (PIPo) was 
neglected in comparison t o  the other terms. The trajectories were computed for 
eight ratios of uER/uo. 

It can be noted that the directions of the radial migration depend primarily on 
the sign of the ratio (or product) of Uo (the maximum unperturbed velocity) and 
UHR (the Hadamard-Rybczynski terminal settlingvelocity), since the second term 
in (33) is small. The drop migrates away from the centreline (i.e. from b = 0) when 
this ratio is positive, and towards the centreline when the ratio is negative. 

In  this work we took the positive z direction to point upwards. Thus, if a bubble 
is placed at Po = 0.5 in a Poiseuillian flow field with positive Uo, U,, is also 
positive and the bubble will migrate away from the centreline of the Poiseuillian 
velocity distribution, if pi < pe. 
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Also shown in figure 2 is the trajectory of a neutrally buoyant drop (i.e. 
U,, = 0). For this particular case we have 

u, = KIuoP, 
( 1485A4 + 429h3 - 1248h2 + 2494h + 2440) 

1050( 2 + 3h)2 (1 + where K,  = 

14 

12 

10 

8 

6 

4 

-2 

-4  

-6 

-8  

- 10 

- 12 

- 14 
FIGURE 2. Trajectories of a drop initially located at Po = 0.5 for various U,,/U,,. 

peUo/u  = 0.01, a/R, = 0.1, h = 0. 

The trajectory is determined as before, viz. 

Note that in this case the radial component of the terminal settling velocity 
always takes a positive sign. 
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4. Conclusions 
A general second-order theory is presented for deformable particles suspended 

in an unbounded medium when the flow field far from the particle is arbitrary 
(albeit Stokesian). 

As a special example, the motion of a deformable particle suspended in an 
unbounded Poiseuillian flow field was solved. The following can be concluded from 
this solution. 

Due to the deformation of the drop, there exists a radial component of the 
settling velocity. The direction of radial migration depends primarily on the sign 
of the product U,, (the Hadamard-Rybczynski terminal settling velocity) by U, 
(the maximum Poiseuillian velocity). A positive product results in a lateral migra- 
tion away from the location of maximum velocity, while the inverse is true for a 
negative product. 

The direction of migration of neutrally buoyant particles is always away from 
the centreline. 

The authors are indebted to Professor H. Brenner for his helpful comments. 
This work was supported by Grant 11-1196 from Stiftung Volkswagenwerk, 
Hannover . 

Appendix A. Recapitulation of the first iteration 

solved by Hetsroni & Haber (1970) in terms of the following harmonics: 
The solid spherical harmonics of the first iteration (spherical droplet) were 

where n = 1 to co and where the coefficients were defined as follows: 

(2n  - 1 )  (2n + 3 )  2n + 3 
A? = n(1 + A )  [G c+PR] 
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The coefficients a:, p,” and y: depend solely on the unperturbed flow field and on 
the geometry of the drop. These coefficients can be computed by relatively simple 
mathematical operations. 

The equation of the interface resulting from the f i s t  iteration was given as 
follows: 

(A 3) 

where one must keep in mind that LqXq(8, 4) is an abbreviation for 2n + 1 terms, 
that is: 

(A 4) 

1 m 

r = a 1 + c L,S,(O,$) 3 [ Q=2 

Q 

m=O 
L,s,(o, 4) = x [L: cos rn9 + 2~ sinrn41 e ( c o s  el, 

where Pr(cos 8) is the associated Legendre polynomial. The coefficients LF 
were determined by us previously as follows: 

[(4q3 + 6q2 + 2q + 3) h + (4q3+ 6q2- 4q- S)] 1 

+’ae [(4q3 + 6q2 + 2q - 3)h + (4q3 + 6q2 - 4q)]), (A 5 )  

with similar expressions for x?, when L ~ Y  and ,@ replace ar and @, respectively. 

0- 

Appendix B. Boundary conditions of deformed drops 
Using the transformed boundary conditions (12), with (8) and (lo), one can 

obtain the boundary conditions of a deformed drop in a convenient form. 
First we use a Taylor series expansion to  perform a preliminary calculation 

which will prove to be useful later. Expand an arbitrary vector A, to be evaluated 
at the surface of the drop 5 in terms of its value on the sphere r = a (indicated by 
an asterisk) : 

[A], = [A]* + [aA/ar]*a LqSq+ O(L:). (B 1) 
Q 

From (12 a, b )  we have 

Using (8) and (13) one obtains 
[u], . t, = 0. 

[u‘”],. [t,-~:L,as,]+~~,[u(,)],. [t,-ZLqQk7,] = 0, (B 2) 
which, together with the expansion demonstrated in (B l), yields 

u(l)*.t,+t,,(~u(l)/ar)*ax L q S q - u ~ l ~ * . ~ L q ~ S q + ~ L q u ~ , , + O ( L ~ )  = 0, (B3) 

but, since u(l)*. t, = 0 and since the coefficients L, are independent, the following 
results : 

Q Q Q 

u& = u(1)*, asq- ~,[rauL1)/ar]* = Q . (squ(l)*). 

V(q)r * - - v(1)*. asq- Sq[r av!l)*/ar] = . (Sqv(l)*), (B 5 )  

(B 4) 

Using an analogous procedure for the radial component of the velocity exterior to 
the drop, we obtain 



272 8. Haber and G .  Hetsroni 
y(l)* = (1 * but since u ) ,  

we readily obtain 

In  (12c) the velocity gradients were equated, 

v&r - U&r = 0. 

v. [v], = v. [u],. (B 7 )  

Expanding [v], in a series similar to (B l),  and recalling (8) and (lo), we have 

and similarlyfor V.  [uJ,. Substitutionin (B ?):recalling that v(I)* = u(1)*, results in 

where use have been made of the equation 

-rV.v&, = [ra~(,~/ar]*. 

t,.Vx[v],= t,.VX[U],. 

(t, - c L,VS,, * v x [vl, = (t, - c L,VS,) - v x [ul,, 

The next transformed boundary condition, from (124 ,  is 

Substitution of (13) yields 

Q Q 

from which one obtains 
r . V x  [v], = r . V x  [u],. 

Expanding in series and using (8) and (1 0) : 

r. V x [v], = r . V x {[v(l)], + I: LQv,*,)) 
Q 

= r .Vxv(l)*+r .Vx [ ( rav( l ) /ar )*CL,S, ]+r .Vx (xLqv;)), (B11) 

(B12) 

Substitution of (B 11) and (B 12) into (B lo), recalling again that $I)* = u(1)* 

Q Q 
and similarly for U, viz. 

r . V x  [u ]~  = r .Vxu( l )*+r .Vx [(rauc1)/ar)*I:L,Xq]+r.Vx (zLqu&). 
P q 

and that the L i s  are independent, yields 

r . ~  x [v(,)-u(,)]* = r . ~  x (8, [ry-rF]*). (B 13) 

The next transformed boundary condition (12e) is 

t n . V X [ n ( n ) ] s =  t,.Vx[T(n)]s+tn.VX 
from which one has 
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where the stress tensor IT can be expressed in a manner similar to (lo), i.e. 

Thus, 
IT = d 1 )  + sLqIT(q). 

[?r(,)Is = ~ C I ~ ] * + ~ ~ ~ ~ ( , ) ~ , ) - ~ L ~ ~ ( ~ ) . ~ Q X ~ + ~  L,S,(rarr~:~/ar)*+O(L~). (B 15) 

The normal stress vector inside the droplet T(%) evaluated on the surface of the 
drop is determined analogously. Substituting the above in the boundary con- 
dition (B 14), one obtains 

C l  Q Q 

t , . V  x (7r{:;*-T[;;*)-x LqVXq.V x (7CI:]*-T71:]*)+2L,tr.V x (7C&(q)-T;)(q)) 
4 4 

-f 2 Lq t, . v X [as,. ( 'dl) - l'(')) *] 
Q 

+ CL,t , .V x {X,(ra?rl:~/ar-ra.cG~/ar)*}+O(L~) = 0. 
4 

From boundary condition (3c) we have that 
t,, v x ..If]* = t r . v x (l)* 9 

and, since the coeEcients L, are independent, one readily obtains 
t, . v x [?E&(ql - T1*7)(q)] = as,, v x [7C;:{* - .$]*I + tr . v x {as,. [,(I) - .(1)]*) 

- t,. V x {8q[(r8?r1!)/ar) - (r a#/ar)]*). 
The following relation from Hetsroni & Haber (1970), 

together with the boundary conditions of the first iteration yields 
a, 

Substitution in the previous equation results in 
m 

t r . 0  x [ w q ) - w ( * ) l *  = V'sq. z (n2+n-2)  (v.L,/a)V x (X,t,) 
,=2 

+ t, . v X {as,. [dV - T(l)] *} 
- t , . V  x {X,[raxl:)/ar-raT[:]/ar]*}. (B 16) 

The last boundary condition was written as (l2f),  

t , .V x {t, x [7C(,)]J = t , . V  x {t, x [.c(,)Is} + t , . V  x t, x t,a -+- , ( GI 31 
where the last term vanishes identically. Therefore, the boundary conditions can 
be written as follows: 

t n  * V x {tn x (n )Id = t n  * V x {tn x CT (n )Is)* 

t, x [7C(,)ls = t, x 7C{f]* + t, x Lq";lc7)(*) - z L,t, x IT(l)*. Vsq 

(B17) 
Expanding inseries, using (B 15) and neglecting terms of O(Li) and higher, one 

obtains: 

4 Q 

+ t, x [C ~ ~ ~ , ( r a x [ : ] / a r ) * ]  - L,VX, x +]*. 
4 4 

18 = = M  49 
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Further manipulations result in 
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t,. v x {tn x [X(,)],} = t,. v x [t, x 7$))*1- x LqVSq. v x It, x n[S*I 
9 

+ c Lq t,. v x [t, x n;) (q ) ]  + c, Lq t,. v x {t, x Sq[r an{f,)/ar]*} 
n P 

- C Lqt,.v x (t, x +)*. vsqj- c L,tr.v x (axq x n~;j*). 
P Q 

(B 18) 
A similar expression is obtained for the internal normal stress vector T(,), when 

Substitution of (B 18) into (B 17), recalling that 
T replaces IT in (B 18). 

t, . v x {t, x [n# - T#]*) = 0 

vs,. v x {t, x [Xg]  - T#]*} = 0, and 
yields, after some simplifications: 

t,.V x {t,X ["(,)(q)-7(,)(q)]*} = -t,.V x {t,X S,[ranl~,,/ar-raT[:~/ar]*} 
t,, . v X {t, X [dl) - 'dl)]* . vsq} 

Appendix C. Evaluation of coefficients in the boundary conditions 
The boundary conditions of the second iteration were expressed in appendix B 

in terms of the known first-iteration solutions of the velocity fields. Now, we plan 
to express the boundary conditions in terms of the known coefficients of the 
unperturbed flow field, an,Pn and 7,. 

First, some preliminary calculations. Substituting (A 1) and (A 2) into (5a) one 
obtains the following: 

u(l)* = 5 {llnynv x ( t r s n )  + (lKnan+l>nPn) Vsn)) (C 1) 
n=l 

where the Hebrew letters Gimel, Beth and Aleph are defined as follows: 

9, = (2n+l)/n(n+l)[A(n-l)+n+2], l X ,  = (%+3)/n(n+l)(l+A), 
lan = (2n- l)/n(n+ 1) (1 + A ) .  

Note that the coefficients 13, andll, aremerely functions of the integers n 
and of the ratio between the viscosities A. Thus, the velocity in (C 1) is expressed 
in terms of surface harmonics S,, the coefficients of the unperturbed field a,, P, 
and y, and the coefficients I&, lan and lln. We now proceed to express other useful 
terms on the same principle. 

From (5a )  and (A 1) and (A 2) and using Euler's theorem for homogeneous 
polynomials, one obtains 

} (C2) 
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and a similar expression from ( 4 a )  and (A 1 )  and (A 2 )  for r(a$l)/ar). Substitution 
and some simplification yield 

The radial stress vector inside the drop can be expressed as follows: 

from which, similar to (C 4 ) ,  the following is obtained: 

+ 2, ,"vp',"J. (C 7 )  
+ (n+ 1 )  (2n+ 3 ) p 4  

In  an analogous procedure to (C 5), we get 

and (coeff) is an undefined coefficient of the unit vector t,. This coefficient turns 
out to be insignificant, as shown in these calculations: 

The well-known expression for the stress tensor T is 

where I is the idem tensor. Using the known expressions for the components of 
the stress tensor, combined with the boundary conditions imposed on the first 
iteration, one obtains 

- 
where I = I - t,t, and where the expression in the second brackets does not con- 
tribute to further computation. 

18-2 
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Substituting Hetsroni & Haber's (1970) solution for the fist iteration fields of 
d1), pi1' andpil), i.e. (C l), ( 5 b )  and ( 4 b ) ,  into (C 1 1 )  one obtains 

(-,.+I)- (1) * = /dl  - A )  5 {lanyn[pa x ( t r s n )  + 0~ x ( t r ~ n ) ~ ~  a n = l  
T )  

212- 1 tensoria1 components of + n ( n + l ) ( l + A )  [ h ( 4 ~ 2 + 6 n + 4 ) + 2 n l ~ n ) s , + (  r r ,  i - 6 ,  O r ,  t r #  , t  # r  ) *  
(C 12)  

Substituting (C I ) ,  (C a), (C 8) and (C 12)  into the transformed boundary con- 
ditions of the second iteration, one obtains, after some laborious calculations, 
the following expressions: 

nfQ 

i=O or 1 
S q n  s = 2 g%.nsi7 

n+q 
Vsq.OSn = C hp"S*, 

i = O  or 1 

n+q-1 

i=O or 1 
tr.asq x asn = ft"S,, 

t , .ax (asq.oasn) = x kzgns,, 

o.(Osq.Oasn) = lf*"Si, 

n+q-1 

i = O  or 1 

n+q 

i=O or 1 
nfq-1 

i = O  or 1 
0.  (OS,. [(Pa x trSn) + (00 x trSn)T]} = x mpn,Si, 

I ( C 1 3 )  

ion : 

J n+Q 

i = O  or 1 
t,.V x { v s ~ . [ ( ~ O X  t r S n ) + ( ~ ~ x t r s n ) T ] >  = c jpnsi* 

Here too we recall that S,, for example, is an abbreviation for 2q + 1 expressions 

m$PT (m = 0 , l  ,...,a). Sill 
of the form 

COB 
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Hence, the product XnXn symbolizes the product 

277 

sin (m = 0,1,  . . . , q ) ;  
( p  = 0,1, ..., n); cos 

thus, the coefficients g?', h?", etc. are functions of i, g,  n as well as the indices 
p and n. 
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